

Outline

- The LISA data set:
 - Time delay interferometry
 - The synthesized observables
- Analysis techniques and challenges:
 - Bayesian inference: Markov Chain Monte Carlo methods
 - Matched-filtering
 - Incoherent methods
 - Hierarchical strategies
- Conclusions

LISA: a GW telescope

- LISA is an all-sky monitor:
 - All sky surveys are for free
 - "Pointing" is done in software
- LISA has guaranteed sources
- Signals are (for the vast majority) long lived
- Information about the sources are reconstructed through the structure of the recorded signal
 - Intrinsic in the waveform
 - Induced by instrument motion and response
- Each signal depends (with a few exceptions) on 7-to-17 parameters

- One year of LISA data contains:
 - Several known solar mass binaries (verification sources)
 - ~ 10000 resolvable WD binaries (a few with NS companion)
 - $\sim 100 EMRIs$
 - ~ 10 I/M/SMBH binaries
 - Some short lived burst events
 - Stochastic foregrounds and backgrounds

GW observations from space and ground

- LISA
- Small data volume: ~10⁸ (T/3 yr) (f_S/1 Hz) data points
- Signals:
 - Many
 - Long and short lived
 - Overlapping
 - Variety of signal strength (from h > n to h << n)
- One observatory with colocated instruments

- LIGO/GEO/VIRGO/TAMA
- Large data volume:
 ~ 10⁹ (T/1 day) (f_S/10 kHz) data points
- Signals:
 - Rare
 - Long and short lived
 - De facto non overlapping
 - Weak (h << n)</p>
- Network of several geographically separated instruments

The LISA "interferometer"

- Gravitational waves passing trough the LISA constellation affect the separation between test masses
- This is monitored by comparing the locally generated frequency with the frequency of the received laser signal
- The raw data set: six 1-way Doppler links (+ housekeeping channels)

One-way Doppler link

 The effect of GWs on each one-way Doppler link is

$$y_{12}(t) = \frac{1}{2} \frac{\hat{n}^j \hat{n}^k (h_{jk}[2] - h_{jk}[1])}{1 - \hat{n}^j \hat{k}_j}$$

(Estabrook and Wahlquist 1975)

Contributions to the one-way link

 The contributions to the observable y_{ij}(t) are (schematically):

$$y_{ij}(t) = C_i(t_e) - C_j(t) + n + h$$

- C(t): contribution due to laser frequency noise which is many orders of magnitude above h and n
- n: secondary noises (acceleration and photon shot noise)
- h: GWs, what we are interested in
- Key issue: how can one suppress the dominant contribution from laser noise?

Time Delay Interferometry (TDI)

 One can construct combinations that cancel e.g. C₁(t):

$$y_{21}(t) - y_{31}(t) = [C_1(t) - C_2(t-L)] - [C_1(t) - C_3(t-L)]$$

Time Delay Interferometry (TDI)

 TDI: linear time-delayed combinations of y_{jk} (add and subtract 1-way links to create a close loop) that cancel laser noise

 An example: synthesized (equal-arm) Michelson interferometer

$$\begin{aligned} & [y_{21}(t) - y_{12}(t-L)] - [y_{31}(t) - y_{13}(t-L)] = \\ & [C_1(t) - C_2(t-L) + C_2(t-L) - C_1(t-2L)] - \\ & [C_1(t) - C_3(t-L) + C_3(t-L) - C_1(t-2L)] = \\ & = \mathbf{0} + \mathbf{n} + \mathbf{h} \end{aligned}$$

The zoo of TDI variables

Insensitive to GW at f << 10 mHz (~ 1/L): it allows us to obtain a noise only channel at low frequency

(Armstrong, Estabrook and Tinto, 2001)

The LISA observables: the data set

- Not all the combination are statistically independent
- Full information about the GW sky are contained in 3 independent data streams (e.g. A, E, T)
- LISA science is in ~ 10⁹ data points
- Observables:

 $h(t) = \Sigma_k F_k(t; source location) h_k(t; physics)$

 Many papers: Armstrong, Estabrook, Tinto, Vinet, Dhurandhar, Nayak, Vallisneri, Cornish, Larson, Prince, Shaddok, Romano, Woan....

Complications: TDI generations

- First generation TDI: cancel laser noise for a static constellation
- However:
 - Constellation rotates
 - Arm length is not constant (flexing)
- Second generation TDI: accounts for rotation of constellation and relative motion of spacecraft
- The second generation TDI observables are obtained as linear combinations of first generation TDI

LISA: all-sky monitor

Sensitivity:

f = 3 mHz(fixed ι, ψ)

(Rogan and Bose, astro-ph/0605034)

LISA orbit

Extracting information

 Information about sources are reconstructed through structure of signal

- Intrinsic in the waveform
- Induced by instrument motion and response
- Example: MBH binary inspiral

LISA rotation around its axis

Small spin

Pointing a source

LISA data analysis

• Given the data set(s):

N >> 1 and unknown

$$d(t) = \sum_{i=1}^{N} h_j(t; \vec{\lambda}_j) + n(t)$$

Waveform (convolved with the instrument response): could either be well modeled or poorly known

- We want to identify the signals and extract information on the unknown parameters λ
- Bayesian approach: derive the posterior probability density function (pdf)
- Frequentist approach: construct a detection statistic (filter the data)

LISA data analysis issues

- Source specific:
 - Identify each source down to the detection threshold
 - Detect Extreme Mass-Ratio Inspirals (EMRIs)
 - Unambiguously detect a stochastic signals
 - **—**
 - Many similarities with LIGO/GEO/VIRGO
- Global analysis:
 - Extract information (do astronomy, cosmology and fundamental physics) with large number of overlapping sources (both loud and weak signals)
 - ... so large they become confused in a significant portion of the observational window

Bayesian inference

 Bayes' theorem: the appropriate rule for updating our degree of belief (in one of several hypotheses within some world view I) when we have new data:

A consequence of the product rule:

$$p(a|b) p(b) = p(b|a) p(a)$$

Technical problem: integration

- The model $\Sigma_j h_j(\lambda)$ depends on a very large number of parameters (~ 10⁵)
- We are usually interested in pdf's of one parameter at the time: marginalization

$$p(\lambda_j) = \int \dots \int p(\vec{\lambda}) d\lambda_1 d\lambda_{j-1} \dots d\lambda_{j+1} d\lambda_N$$

The difficulty is the integration (large number of dimensions)

Markov Chain Monte Carlo (MCMC) methods

We need to evaluate integrals of the form:

$$p(\lambda_j) = \int \dots \int p(\vec{\lambda}) d\lambda_1 d\lambda_{j-1} \dots d\lambda_{j+1} d\lambda_N$$

- The strategy is to sample the space $(\lambda_1, \lambda_2, ..., \lambda_N)$ so that the density of the sample reflects the posterior probability $p(\lambda_1, \lambda_2, ..., \lambda_N)$
- MCMC algorithms perform random walks in the parameter space so that the probability of being in a hypervolume dV is p dV
- The random walk is a Markov chain: the transition probability of making a step depends on the proposed location $x'(\lambda_1, \lambda_2, ..., \lambda_N)$ and the current location $x(\lambda_1, \lambda_2, ..., \lambda_N)$
- MCMC methods have demonstrated success in problems with large parameter number (Google, financial markets, WMAP....)

An algorithm: Metropolis-Hastings

We want to derive p(x)

Assume we are at location x_t

- I. Choose a candidate state x_t using a proposal distribution $q(x_t | x_t)$
- II. Compute the Metropolis ratio

$$r = rac{p(x_t') \, p(d|x_t') q(x_t|x_t')}{p(x_t) \, p(d|x_t) q(x_t'|x_t)}$$

22

III. If r>1 then make the step: $x_{t+1} = x_t$ ' if r<1 then make the step with probability r, otherwise set $x_{t+1} = x_t$ so that the location is repeated i.e., make the step with an acceptance probability

$$lpha(x_t'|x_t) = \min\left\{1, rac{p(x_t') \, p(d|x_t') q(x_t|x_t')}{p(x_t) \, p(d|x_t) q(x_t'|x_t)}
ight\}$$

IV. Choose next candidate based on the (new) current position...

A Vecchio - LISA Data Analysis

Examples: Source confusion

N = 100 sinusoids (N unknown)

(Umstaetter et al, 2005)

(Cornish and Crowder, 2005; Cornish et al, 2006)

A few (N known) WD binaries

Example: MBHB (+ DWD)

MBH binary

(Cornish and Porter, gr-qc/0605089 with foreground gr-qc/0605135)

MBH binary + WD binary

(Wickham, Stroeer, AV, gr-qc/0605071)

Matched filter

Given the data set:

$$d(t) = h(t; \vec{\lambda}) + n(t)$$

Construct a detection statistic c [here q is the filter or template]:

$$c = \int \tilde{d}(f)\tilde{q}^*(f)df$$

The signal to noise ratio is:

$$(S/N) = \frac{E[c]}{\sigma_c}$$

Optimal filter (i.e. highest SNR) is:

$$\tilde{q}(f) \longrightarrow k\tilde{h}(f; \vec{\lambda})/S(f)$$

Matched filter - an example

Signal-to-noise ratio (SNR)

• The (matched-filter) SNR or optimal SNR is:

$$(S/N)^2 = \langle h|h\rangle = 4\int_0^\infty \frac{|\tilde{h}(f)|^2}{S(f)}df$$

 The optimal SNR scales as the sqrt of the integration time (or the number of recorded wave cycles): one can "dig into" the noise:

$$(S/N)^2 \propto \int \mathcal{N}(f) \, \frac{h^2[t(f)]}{h_{\rm rms}^2(f)} \, d(\ln f)$$

$$\propto f_c T \, \frac{h^2}{h_{\rm rms}^2} \qquad \qquad \text{h can be $<<$ h}_{\rm rms}$$
 104 (f/1 mHz) (T/107 s)

Geometric approach to data analysis

 Scalar product between a signal and a template (or two signals):

$$\langle g|h\rangle = 2\int_0^\infty rac{ ilde{g}^*(f) ilde{h}(f) + ilde{g}(f) ilde{h}^*(f)}{S(f)}df$$

• Signal-to-noise ratio:

$$(S/N)^2 = \langle h|h\rangle = 4\int_0^\infty \frac{|\tilde{h}(f)|^2}{S(f)}df$$

Dhurandhar and Sathyaprakash (1993) Owen (1996)

Fisher information matrix

Likelihood (for S/N >> 1):

$$p(\vec{\lambda}|s) \propto \exp\left[-\frac{1}{2}\Gamma_{ab}\Delta\lambda^a\Delta\lambda^b\right]$$

- The Fisher information matrix is: $\Gamma_{ab} = \langle \partial_a h \mid \partial_b h \rangle$
- The variance-covariance matrix Σ is the inverse of Γ
- Statistical mean square errors and correlation coefficients:

$$\sigma_a = \langle (\Delta \lambda^a)^2 \rangle^{1/2} = \sqrt{\Sigma^{aa}} \quad c^{ab} = \frac{\langle \Delta \lambda^a \Delta \lambda^b \rangle}{\sigma_a \sigma_b}$$

 Note: this provides a lower bound to the error (Cramer-Rao bound)

Parameter determination: MBHB

MBH binary systems

 $m_1 = 10^6 M_{sun}$

$$m_2 = 10^6 M_{sun}$$

z = 1

• Error box in the sky ~ 1 deg²

 $\forall \Delta D/D \sim 0.01 - 0.1$

 $\forall \ \Delta m/m \sim 10^{-4} - 0.1$

Many papers: Cutler (1998), Hughes, Holz, Cornish, Krolak, Buonanno, Berti, Will, Sathyaprakash, AV...

(AV, 2004)

Parameter determination: EMRI

$$\frac{\Delta m}{m} \sim \frac{\Delta M}{M} \sim \Delta \left(\frac{S}{M^2}\right) \sim 10^{-4} \qquad \Delta \theta \sim 2^o \qquad \frac{\Delta D}{D} \sim 0.05$$

S/M^2	0.1	0.1	0.1	0.5	0.5	0.5	1	1	1
€LSO	0.1	0.3	0.5	0.1	0.3	0.5	0.1	0.3	0.5
$\Delta(\ln M)$	2.6e-4	5.6e - 4	5.3e-5	2.7e-4	9.2e - 4	7.7e - 5	2.8e-4	2.5e-4	1.5e-4
$\Delta(S/M^2)$	$3.6e{-5}$	7.9e - 5	4.5e-5	1.3e-4	6.3e - 4	5.1e - 5	2.6e-4	3.7e-4	2.6e-4
$\Delta(\ln \mu)$	6.8e - 5	1.5e-4	$7.4e{-5}$	6.8e-5	9.2e - 5	1.0e - 4	6.1e - 5	$9.1e{-5}$	$1.0e{-3}$
$\Delta(e_0)$	6.3e - 5	1.3e-4	2.9e - 5	8.5e-5	2.8e - 4	3.2e - 5	1.2e-4	1.1e-4	1.6e-4
$\Delta(\cos \lambda)$	6.0e - 3	1.7e-2	1.3e - 3	1.3e - 3	5.8e-3	2.4e-4	6.5e-4	8.4e-4	4.7e-4
$\Delta(\Omega_s)$	1.8e - 3	1.7e - 3	7.9e-4	2.0e - 3	1.7e - 3	7.6e-4	2.1e-3	1.1e-3	6.7e-4
$\Delta(\Omega_K)$	5.6e - 2	5.3e-2	4.7e-2	5.5e-2	5.1e-2	4.7e-2	5.6e - 2	5.1e-2	4.8e-2
$\Delta(\tilde{\gamma}_0)$	$4.0e{-1}$	$6.3e{-1}$	$3.8e{-1}$	1.0e + 0	$6.1e{-1}$	3.9e - 1	$9.3e{-1}$	$3.4e{-1}$	$3.9e{-1}$
$\Delta(\Phi_0)$	$2.6e{-1}$	6.7e - 1	$2.2e{-1}$	1.4e + 0	7.5e - 1	2.7e-1	1.5e + 0	$1.7e{-1}$	$3.3e{-1}$
$\Delta(\alpha_0)$	$6.2e{-1}$	$5.8e{-1}$	5.5e - 1	6.3e-1	5.9e - 1	5.6e - 1	$6.4e{-1}$	$5.9e{-1}$	$5.9e{-1}$
$\Delta[\ln(\mu/D)]$	8.7e-2	3.8e - 2	3.7e-2	3.8e-2	3.7e - 2	3.7e-2	3.8e - 2	7.0e-2	3.7e-2
$\Delta(t_0)\nu_0$	4.5e-2	$1.1e{-1}$	3.3e-2	2.3e−1	1.3e-1	4.4e - 2	2.5e-1	3.2e-2	5.5 - 2

(For 10 ${\rm M}_{\rm \square}$ onto 10⁶ ${\rm M}_{\rm \square}$ at 1Gpc, for various eccentricities and spins)

Barack and Cutler (2004)

Geometric approach to data analysis

Example: template bank for binary in-spiral

A Vecchio - LISA Data Analysis

Computational costs for EMRI

(Barack and Cutler)

19th June 2006

Sub-optimal methods

- Matched filtering is not a viable strategy if:
 - Theoretical waveforms are not accurate enough (such as poorly modeled burst signals - e.g. final plunge of MBH binary)
 - Computational costs are too high (e.g. EMRI)
- Alternatives:
 - "Incoherent methods"
 - Hierarchical methods

Look for hot pixels

Time

A Vecchio - LISA

An example: EMRI

Power density in t-f box

Hierarchical scheme

Coherent templates

(Wen and Gair, 2005)

19th June 2006

A Vecchio - LISA Data Analysis

(T Creigthon, Gair, ..)

Stochastic signals

- The detection of stochastic signals depends on LISA multiple observable
 - Cross-correlation (a la LIGO) are not possible
 - Symmetrized-Sagnac (essentially insensitive to GWs at low frequency) is likely the key
- As of today we do not have a solid strategy to detect an isotropic stochastic signal

(Hogan and Bender, 2001)

Conclusions

- LISA data analysis poses a wide spectrum of interesting problems:
 - Specific to LISA and GW observations
 - General with implications for other fields of astronomy
- The outstanding issues are gradually being resolved
- ... but there is still a lot of work to be done
- Many more details in plenary and parallel sessions

A new way to look at TDI

Consider 2 data streams:

$$s_1 = p + n_1 + h_1$$

 $s_2 = p + n_2 + h_2$

noises:

```
p is common noise:  = 0 and <p^2> = \sigma_p^2

n_{1,2}: <n_1^2> = < n_2^2> = \sigma_n^2

n and p are uncorrelated: <n_1n_2> = < n_1p> = < n_2p> = 0
```


All info are in the likelihood

Likelihood:

$$p(s_1, s_2|a) \propto \exp\left[-\frac{1}{2}Q\right]$$

C is noise covariance matrix

$$Q \equiv (\mathbf{s} - \mathbf{h})^{\mathrm{T}} \cdot C^{-1} \cdot (\mathbf{s} - \mathbf{h})$$
$$\equiv \sum_{i,j=1}^{2} (s_i - h_i) C_{ij}^{-1} (s_j - h_j)$$

$$C_{ij} \equiv \langle (s_i - h_i)(s_j - h_j) \rangle$$

$$C = \begin{pmatrix} \sigma_p^2 + \sigma_n^2 & \sigma_p^2 \\ \sigma_p^2 & \sigma_p^2 + \sigma_n^2 \end{pmatrix}$$

Principal component analysis

Find eigenvalues/vector of C and diagonalize:

$$p(s_{1}, s_{2}|a) \propto p(s_{+}|a)p(s_{-}|a),$$

$$s_{-} \equiv s_{1} - s_{2},$$

$$p(s_{+}|a) \propto \exp\left[-\frac{1}{2}\frac{(s_{+} - 3a)^{2}}{4\sigma_{p}^{2} + 2\sigma_{n}^{2}}\right],$$

$$p(s_{-}|a) \propto \exp\left[-\frac{1}{2}\frac{(s_{-} - a)^{2}}{2\sigma_{n}^{2}}\right].$$

$$a = \frac{1}{2\sigma_{-}^{2}}$$

• For LISA $\sigma_p^2 >> \sigma_n^2$, so there is no loss statistical inference only on the s_ term observable (Romano and Woan, 2006)

Noise

Assuming Gaussian and stationary noise:

- Mean:
$$\langle \tilde{n}(f) \rangle = 0$$

- Variance
$$\langle \tilde{n}(f)\tilde{n}^*(f')\rangle = \frac{1}{2}\,S(f)\,\delta(f-f')$$

rms fluctuation of the noise in a band Δf is:

$$h_{\rm rms}(f) = \sqrt{\Delta f \, S(f)}$$

$$h_{\mathrm{rms}}(f) = \sqrt{f \, S(f)}$$

APS April 2006

The StackSlide Method

- Break up data into segments; FFT each, producing Short (30 min)
 Fourier Transforms (SFTs) = coherent step.
- StackSlide: stack SFTs, track frequency, slide to line up & add the power weighted by noise inverse = incoherent step.
- Other semi-coherent methods:
 - Hough Transform: Phys. Rev. D72 (2005) 102004; gr-qc/0508065.
 - PowerFlux: see next talk, W11.00005
- Fully coherent methods:
 - Frequency domain match filtering/maximum likelihood estimation (C7.00001; W11.00006)
 - Time domain Bayesian parameter estimation (C7.00002)

Example: EMRI

(Stroeer & Gair)